PuSH - Publikationsserver des Helmholtz Zentrums München

Oala, L.* ; Murchison, A.G.* ; Balachandran, P.* ; Choudhary, S.* ; Fehr, J.* ; Leite, A.W.* ; Goldschmidt, P.G.* ; Johner, C.* ; Schörverth, E.D.M.* ; Nakasi, R.* ; Meyer, M.* ; Cabitza, F.* ; Baird, P.* ; Prabhu, C.* ; Weicken, E.* ; Liu, X.* ; Wenzel, M.* ; Vogler, S.* ; Akogo, D.* ; Alsalamah, S.* ; Kazim, E.* ; Koshiyama, A.* ; Piechottka, S.* ; Macpherson, S.* ; Shadforth, I.* ; Geierhofer, R.* ; Matek, C. ; Krois, J.* ; Sanguinetti, B.* ; Arentz, M.* ; Bielik, P.* ; Calderon-Ramirez, S.* ; Abbood, A.* ; Langer, N.* ; Haufe, S.* ; Kherif, F.* ; Pujari, S.* ; Samek, W.* ; Wiegand, T.*

Machine learning for health: Algorithm auditing & quality control.

J. Med. Syst. 45:105 (2021)
Verlagsversion DOI
Open Access Gold (Paid Option)
Creative Commons Lizenzvertrag
Developers proposing new machine learning for health (ML4H) tools often pledge to match or even surpass the performance of existing tools, yet the reality is usually more complicated. Reliable deployment of ML4H to the real world is challenging as examples from diabetic retinopathy or Covid-19 screening show. We envision an integrated framework of algorithm auditing and quality control that provides a path towards the effective and reliable application of ML systems in healthcare. In this editorial, we give a summary of ongoing work towards that vision and announce a call for participation to the special issue  Machine Learning for Health: Algorithm Auditing & Quality Control in this journal to advance the practice of ML4H auditing.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Editorial
Schlagwörter Algorithm ; Artificial Intelligence ; Auditing ; Health ; Machine Learning ; Quality Control; Artificial-intelligence; Deep
ISSN (print) / ISBN 0148-5598
e-ISSN 1573-689X
Quellenangaben Band: 45, Heft: 12, Seiten: , Artikelnummer: 105 Supplement: ,
Verlag Springer
Verlagsort New York, NY
Begutachtungsstatus Peer reviewed