PuSH - Publikationsserver des Helmholtz Zentrums München

scCODA is a Bayesian model for compositional single-cell data analysis.

Nat. Commun. 12:6876 (2021)
Verlagsversion DOI
Open Access Gold
Creative Commons Lizenzvertrag
Compositional changes of cell types are main drivers of biological processes. Their detection through single-cell experiments is difficult due to the compositionality of the data and low sample sizes. We introduce scCODA ( https://github.com/theislab/scCODA ), a Bayesian model addressing these issues enabling the study of complex cell type effects in disease, and other stimuli. scCODA demonstrated excellent detection performance, while reliably controlling for false discoveries, and identified experimentally verified cell type changes that were missed in original analyses.
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
ISSN (print) / ISBN 2041-1723
e-ISSN 2041-1723
Zeitschrift Nature Communications
Quellenangaben Band: 12, Heft: 1, Seiten: , Artikelnummer: 6876 Supplement: ,
Verlag Nature Publishing Group
Verlagsort London
Begutachtungsstatus Peer reviewed
Förderungen Projekt DEAL