PuSH - Publikationsserver des Helmholtz Zentrums München

Direct neuronal reprogramming: Fast forward from new concepts toward therapeutic approaches.

Neuron 110, 366-393 (2022)
DOI
Free by publisher: Verlagsversion online verfügbar 01/2023
Differentiated cells have long been considered fixed in their identity. However, about 20 years ago, the first direct conversion of glial cells into neurons in vitro opened the field of “direct neuronal reprogramming.” Since then, neuronal reprogramming has achieved the generation of fully functional, mature neurons with remarkable efficiency, even in diseased brain environments. Beyond their clinical implications, these discoveries provided basic insights into crucial mechanisms underlying conversion of specific cell types into neurons and maintenance of neuronal identity. Here we discuss such principles, including the importance of the starter cell for shaping the outcome of neuronal reprogramming. We further highlight technical concerns for in vivo reprogramming and propose a code of conduct to avoid artifacts and pitfalls. We end by pointing out next challenges for development of less invasive cell replacement therapies for humans.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Review
Schlagwörter Aav ; Direct Neuronal Reprogramming ; In Vivo Conversion ; Pioneer Factors ; Transcription Factors; Adult Human Fibroblasts; Achaete-scute Complex; Radial Glial-cells; Direct Conversion; In-vivo; Functional-neurons; Parkinsons-disease; Ng2 Glia; Subventricular Zone; Neural Progenitors
ISSN (print) / ISBN 0896-6273
e-ISSN 1097-4199
Zeitschrift Neuron
Quellenangaben Band: 110, Heft: 3, Seiten: 366-393 Artikelnummer: , Supplement: ,
Verlag Cell Press
Verlagsort Cambridge, Mass.
Begutachtungsstatus Peer reviewed
Förderungen SNF postdoctoral fellowships
NeuroCentro ERC grant
EU NSC Reconstruct Consortium
SyNergy Excellence Cluster
German Research Foundation