PuSH - Publication Server of Helmholtz Zentrum München

Linser, R.* ; Bardiaux, B.* ; Higman, V.* ; Fink, U.* ; Reif, B.

Structure calculation from unambiguous long-range amide and methyl 1H-1H distance restraints for a microcrystalline protein with MAS solid-state NMR spectroscopy.

J. Am. Chem. Soc. 133, 5905-5912 (2011)
Open Access Green as soon as Postprint is submitted to ZB.
Magic-angle spinning (MAS) solid-state NMR becomes an increasingly important tool for the determination of structures of membrane proteins and amyloid fibrils. Extensive deuteration of the protein allows multidimensional experiments with exceptionally high sensitivity and resolution to be obtained. Here we present an experimental strategy to measure highly unambiguous spatial correlations for distances up to 13 Å. Two complementary three-dimensional experiments, or alternatively a four-dimensional experiment, yield highly unambiguous cross-peak assignments, which rely on four encoded chemical shift dimensions. Correlations to residual aliphatic protons are accessible via synchronous evolution of the (15)N and (13)C chemical shifts, which encode valuable amide-methyl distance restraints. On average, we obtain six restraints per residue. Importantly, 50% of all restraints correspond to long-range distances between residues i and j with |i - j| > 5, which are of particular importance in structure calculations. Using ARIA, we calculate a high-resolution structure for the microcrystalline 7.2 kDa α-spectrin SH3 domain with a backbone precision of ∼1.1 Å.
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Keywords Angle-spinning NMR; Automated NOE assignment; Sensitivity enhancement; Perdeuterated porteins; Rotating solids; SH3 domain; C-13; 3D; Resolution; Backbone
ISSN (print) / ISBN 0002-7863
e-ISSN 1520-5126
Quellenangaben Volume: 133, Issue: 15, Pages: 5905-5912 Article Number: , Supplement: ,
Publisher American Chemical Society (ACS)
Reviewing status Peer reviewed