PuSH - Publikationsserver des Helmholtz Zentrums München

Uniqueness of non-Gaussianity-based dimension reduction.
IEEE Trans. Signal Process. 59, 4478 - 4482 (2011)
DOI
Dimension reduction is a key step in preprocessing large-scale data sets. A recently proposed method named non-Gaussian component analysis searches for a projection onto the non-Gaussian part of a given multivariate recording, which is a generalization of the deflationary projection pursuit model. In this contribution, we discuss the uniqueness of the subspaces of such a projection. We prove that a necessary and sufficient condition for uniqueness is that the non-Gaussian signal subspace is of minimal dimension. Furthermore, we propose a measure for estimating this minimal dimension and illustrate it by numerical simulations. Our result guarantees that projection algorithms uniquely recover the underlying lower dimensional data signals.
Altmetric
Weitere Metriken?
Tags
Icb_ML
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Identifiability; Independent subspace analysis; non-Gaussian component analysis; projection pursuit
ISSN (print) / ISBN 1053-587X
e-ISSN 1941-0476
Zeitschrift IEEE Transactions on Signal Processing
Quellenangaben Band: 59, Heft: 9, Seiten: 4478 - 4482 Artikelnummer: , Supplement: ,
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Verlagsort Piscataway, NJ
Begutachtungsstatus peer-reviewed