PuSH - Publikationsserver des Helmholtz Zentrums München

Efficient framework for model-based tomographic image reconstruction using wavelet packets.

IEEE Trans. Med. Imaging 31, 1346-1357 (2012)
DOI
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
The use of model-based algorithms in tomographic imaging offers many advantages over analytical inversion methods. However, the relatively high computational complexity of model-based approaches often restricts their efficient implementation. In practice, many modern imaging modalities, such as computed-tomography, positron-emission tomography, or optoacoustic tomography, normally use a very large number of pixels/voxels for image reconstruction. Consequently, the size of the forward-model matrix hinders the use of many inversion algorithms. In this paper, we present a new framework for model-based tomographic reconstructions, which is based on a wavelet-packet representation of the imaged object and the acquired projection data. The frequency localization property of the wavelet-packet base leads to an approximately separable model matrix, for which reconstruction at each spatial frequency band is independent and requires only a fraction of the projection data. Thus, the large model matrix is effectively separated into a set of smaller matrices, facilitating the use of inversion schemes whose complexity is highly nonlinear with respect to matrix size. The performance of the new methodology is demonstrated for the case of 2-D optoacoustic tomography for both numerically generated and experimental data.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Dimensionality reduction; image enhancement/restoration (noise and artifact reduction); image reconstruction-iterative methods; integration of multiscale information; inverse methods; optoacoustic/photoacoustic imaging; X-ray imaging and computed tomography; PROJECTION DATA
ISSN (print) / ISBN 0278-0062
e-ISSN 1558-254X
Quellenangaben Band: 31, Heft: 7, Seiten: 1346-1357 Artikelnummer: , Supplement: ,
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Verlagsort New York, NY [u.a.]
Begutachtungsstatus Peer reviewed