PuSH - Publikationsserver des Helmholtz Zentrums München

27 Datensätze gefunden.
Zum Exportieren der Ergebnisse bitte einloggen.
Alle Publikationen dieser Seite in den Korb legen
1.
Tischler, J.* et al.: Metabolic regulation of pluripotency and germ cell fate through alpha-ketoglutarate. EMBO J. 38:e99518 (2019)
2.
Argelaguet, R.* et al.: Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets. Mol. Syst. Biol. 14:e8124 (2018)
3.
Gabryś, H.S.* ; Buettner, F. ; Sterzing, F.* ; Hauswald, H.* & Bangert, M.*: Design and selection of machine learning methods using radiomics and dosiomics for normal tissue complication probability modeling of xerostomia. Front. Oncol. 8:35 (2018)
4.
Buettner, F. ; Pratanwanich, N.* ; McCarthy, D.J.* ; Marioni, J.C.* & Stegle, O.*: f-scLVM: Scalable and versatile factor analysis for single-cell RNA-seq. Genome Biol. 18:212 (2017)
5.
Angerer, P. et al.: Destiny: Diffusion maps for large-scale single-cell data in R. Bioinformatics 32, 1241-1243 (2016)
6.
Haghverdi, L. ; Büttner, M. ; Wolf, F.A. ; Buettner, F. & Theis, F.J.: Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845-848 (2016)
7.
Laimighofer, M. ; Krumsiek, J. ; Buettner, F. & Theis, F.J.: Unbiased prediction and feature selection in high-dimensional survival regression. J. Comput. Biol. 23, 279-290 (2016)
8.
Bonifacio, E. et al.: Effects of high-dose oral insulin on immune responses in children at high risk for type 1 diabetes: The Pre-POINT randomized clinical trial. JAMA 313, 1541-1549 (2015)
9.
Buettner, F. et al.: Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33, 155-160 (2015)
10.
Gabrys, H.* et al.: TH-AB-304-12: Validation of a morphological xerostomia prediction model. Med. Phys. 42:3703 (2015)
11.
Haghverdi, L. ; Buettner, F. & Theis, F.J.: Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics 31, 2989-2998 (2015)
12.
Moignard, V.* et al.: Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat. Biotechnol. 33, 269-276 (2015)
13.
Sass, S. ; Buettner, F. ; Müller, N.S. & Theis, F.J.: RAMONA: A web application for gene set analysis on multilevel omics data. Bioinformatics 31, 128-130 (2015)
14.
Scialdone, A.* et al.: Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods 85, 54-61 (2015)
15.
Tsang, J.C.H.* et al.: Single-cell transcriptomic reconstruction reveals cell cycle and multi-lineage differentiation defects in Bcl11a-deficient hematopoietic stem cells. Genome Biol. 16:178 (2015)
16.
Wilson, N.K.* et al.: Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell 16, 712-724 (2015)
17.
Buettner, F. ; Moignard, V.* ; Göttgens, B.* & Theis, F.J.: Probabilistic PCA of censored data: Accounting for uncertainties in the visualisation of high-throughput single-cell qPCR data. Bioinformatics 30, 1867-1875 (2014)
18.
Ebert, M.A.* et al.: Two non-parametric methods for derivation of constraints from radiotherapy dose-histogram data. Phys. Med. Biol. 59, N101-N111 (2014)
19.
Moignard, V.* et al.: Decoding the transcriptional program for blood development from whole tissue single-cell gene expression measurements. Exp. Hematol. 42, S52 (2014)
20.
Schmidt, A.M.* et al.: Molecular phenotypic profiling of a Saccharomyces cerevisiae strain at the single-cell level. Analyst 139, 5709-5717 (2014)