PuSH - Publikationsserver des Helmholtz Zentrums München

19 Datensätze gefunden.
Zum Exportieren der Ergebnisse bitte einloggen.
Alle Publikationen dieser Seite in den Korb legen
1.
Fröhlich, F. ; Loos, C. & Hasenauer, J.: Scalable inference of ordinary differential equation models of biochemical processes. Methods Mol. Biol. 1883, 385-422 (2019)
2.
Fröhlich, F. et al.: Publisher Correction: Multi-experiment nonlinear mixed effectmodeling of single-cell translation kinetics after transfection. NPJ Syst. Biol. Appl. 5:11 (2019)
3.
Villaverde, A.F.* ; Fröhlich, F. ; Weindl, D. ; Hasenauer, J. & Banga, J.R.*: Benchmarking optimization methods for parameter estimation in large kinetic models. Bioinformatics 35, 830-838 (2019)
4.
Fröhlich, F. et al.: Efficient parameter estimation enables the prediction of drug response using a mechanistic pan-cancer pathway model. Cell Syst. 7, 567-579 (2018)
5.
Fröhlich, F. et al.: Multi-experiment nonlinear mixed effect modeling of single-cell translation kinetics after transfection. NPJ Syst. Biol. Appl. 5 (2018)
6.
Loos, C. ; Möller, K.* ; Fröhlich, F. ; Hucho, T.* & Hasenauer, J.: A hierarchical, data-driven approach to modeling single-cell populations predicts latent causes of cell-to-cell variability. Cell Syst. 6, 593-603.e13 (2018)
7.
Stapor, P. et al.: PESTO: Parameter EStimation TOolbox. Bioinformatics 34, 705-707 (2018)
8.
Stapor, P. ; Fröhlich, F. & Hasenauer, J.: Optimization and profile calculation of ODE models using second order adjoint sensitivity analysis. Bioinformatics 34, 151-159 (2018)
9.
Fröhlich, F. ; Theis, F.J. ; Rädler, J.O.* & Hasenauer, J.: Parameter estimation for dynamical systems with discrete events and logical operations. Bioinformatics 33, 1049-1056 (2017)
10.
Fröhlich, F. ; Kaltenbacher, B.* ; Theis, F.J. & Hasenauer, J.: Scalable parameter estimation for genome-scale biochemical reaction networks. PLoS Comput. Biol. 13:e1005331 (2017)
11.
Ligon, T.S.* et al.: GenSSI 2.0: Multi-experiment structural identifiability analysis of SBML models. Bioinformatics 34, 1421-1423 (2017)
12.
Fröhlich, F. et al.: Inference for stochastic chemical kinetics using moment equations and system size expansion. PLoS Comput. Biol. 12:e1005030 (2016)
13.
Fröhlich, F. et al.: Large-scale modeling of cancer signaling: Mechanistic modeling meets Big Data. Eur. J. Cancer 68, S44-S44 (2016)
14.
Kazeroonian, A. ; Fröhlich, F. ; Raue, A.* ; Theis, F.J. & Hasenauer, J.: CERENA: ChEmical REaction Network Analyzer - a toolbox for the simulation and analysis of stochastic chemical kinetics. PLoS ONE 11:e0146732 (2016)
15.
Bongini, M.* ; Fornasier, M.* ; Fröhlich, F. & Haghverdi, L.: Sparse control of force field dynamics. In: (7th International Conference on Network Games, Control and Optimization, NetGCoop 2014, 29 - 31 October 2014). 2014. 195-200
16.
Fröhlich, F. ; Theis, F.J. & Hasenauer, J.: Uncertainty analysis for non-identifiable dynamical systems: Profile likelihoods, bootstrapping and more. Lecture Notes Comp. Sci. 8859, 61-72 (2014)
17.
Fröhlich, F. ; Hross, S. ; Theis, F.J. & Hasenauer, J.: Radial basis function approximations of Bayesian parameter posterior densities for uncertainty analysis. Lecture Notes Comp. Sci. 8859, 73-85 (2014)
18.
Morath, V.* et al.: Design and characterization of a modular membrane protein anchor to functionalize the moss Physcomitrella patens with extracellular catalytic and/or binding activities. ACS Synth. Biol. 3, 990-994 (2014)
19.
Fröhlich, F.: Approximation and analysis of probability densities using radial basis functions. München, Technische Universität, Fakultät für Mathematik, Master-Thesis, 2013, 93 S.