PuSH - Publikationsserver des Helmholtz Zentrums München

30 Datensätze gefunden.
Zum Exportieren der Ergebnisse bitte einloggen.
Alle Publikationen dieser Seite in den Korb legen
1.
Maurus, S. & Plant, C.: Ternary matrix factorization: Problem definitions and algorithms. Knowl. Inf. Syst. 46, 1-31 (2016)
2.
Maurus, S. & Plant, C.*: Factorizing complex discrete data “with Finesse”. In: (IEEE International Conference on Data Mining (ICDM), 13 December 2016, Barcelona). 2016. 1-6 (Conf. Proc. IEE)
3.
Maurus, S. & Plant, C.*: Skinny-dip: Clustering in a sea of noise. In: (KDD '16 Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17 August 2016, San Francisco, California, USA). 2016. 1055-1064
4.
Ye, W.* ; Maurus, S. ; Hubig, N.* & Plant, C.*: Generalized independent subspace clustering. In: (IEEE International Conference on Data Mining (ICDM), 13 December 2016, Barcelona). 2016. 1-10 (Conf. Proc. IEE)
5.
Böhm, C.* & Plant, C.: Mining massive vector data on single instruction multiple data microarchitectures. In: (IEEE 15th International Conference on Data Mining Workshops, 14-17 November 2015). 2015.
6.
Derntl, A. et al.: Stroke lesion segmentation using a probabilistic atlas of cerebral vascular territories. Lecture Notes Comp. Sci. (2015)
7.
Derntl, A. & Plant, C.: Clustering techniques for neuroimaging applications. WIREs Data Mining Knowl. Discov. 6, 22–36 (2015)
8.
Mai, S.T.* ; He, X.* ; Feng, J.* ; Plant, C. & Böhm, C.*: Anytime density-based clustering of complex data. Knowl. Inf. Syst. 45, 319-355 (2015)
9.
Yang, Q.* ; Boehm, C.* ; Scholz, M.* ; Plant, C. & Shao, J.*: Predicting multiple functions of sustainable flood retention basins under uncertainty via multi-instance multi-label learning. Water 7, 1359-1377 (2015)
10.
Altinigneli, C.* ; Konte, B.* ; Rujescu, D.* ; Böhm, C.* & Plant, C.: Identification of SNP interactions using data-parallel primitives on GPUs. In: Proceedings (IEEE International Conference on Big Data, 27-30 October 2014, Washington, DC, USA). Piscataway, NJ: IEEE, 2014.
11.
Ceruto, T.* et al.: Mining medical data to obtain fuzzy predicates. Lecture Notes Comp. Sci. 8649, 103-117 (2014)
12.
Goebl, S.* ; Meyer-Baese, A.C.* ; Lobbes, M.B.I.* & Plant, C.: Segmentation and kinetic analysis of breast lesions in DCE-MR imaging using ICA. Lecture Notes Comp. Sci. 8649, 45-59 (2014)
13.
Goebl, S.* ; He, X.* ; Mai, S.T.* ; Plant, C. & Böhm, C.*: Finding the optimal subspace for clustering. In: Kumar, R.* ; Toivonen, H.* ; Pei, J.* ; Huang, J.Z.* ; Wu, X.* [Eds.]: Proceedings (IEEE International Conference on Data Mining (ICDM), 14 - 17 December 2014, Shenzhen, China). 2014. 130-139
14.
He, X.* ; Feng, J.* ; Konte, B.* ; Mai, S.T.* & Plant, C.: Relevant overlapping subspace clusters on categorical data. In: Proceedings (20th ACM SIGKDD international conference on Knowledge discovery and data mining, 24-27 August 2014, New York, NY, USA). New York, NY, USA: ACM, 2014. 213-222
15.
Khakhutskyy, V.* et al.: Centroid clustering of cellular lineage trees. Lecture Notes Comp. Sci. 8649, 15-29 (2014)
16.
Maurus, S.* & Plant, C.: Ternary matrix factorization. In: Proceedings (IEEE International Conference on Data Mining (ICDM), 14-17 December 2014, Shenzhen, China). Piscataway, NJ: IEEE, 2014. 400-409
17.
Meyer-Bäse, A.* ; Plant, C. & Górriz Sáez, J.M.*: Advanced computer vision approaches in biomedical image analysis. Comput. Math. Methods Med. 2014:347265 (2014)
18.
Pasquini, L.* et al.: Intrinsic brain activity of cognitively normal older persons resembles more that of patients both with and at-risk for Alzheimer's disease than that of healthy younger persons. Brain Connect. 4, 323-336 (2014)
19.
Plant, C.: Metric factorization for exploratory analysis of complex data. In: Kumar, R.* ; Toivonen, H.* ; Pei, J.* ; Huang, J.Z.* ; Wu, X.* [Eds.]: Proceedings (IEEE International Conference on Data Mining (ICDM), 14 - 17 December 2014, Shenzhen, China). 2014. 510-519
20.
Altinigneli, M.C.* ; Plant, C. & Böhm, C.*: Massively parallel expectation maximization using graphics processing units. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'13, Chicago, 11-14 August 2013). New York: ACM, 2013. 838-846