PuSH - Publication Server of Helmholtz Zentrum München

26 Records found.
Zum Exportieren der Ergebnisse bitte einloggen.
Lay all publications on this page into basket
1.
Neschen, S. et al.: Impact of brain fatty acid signaling on peripheral insulin action in mice. Exp. Clin. Endocrinol. Diabet. 126, accepted (2018)
2.
Adam, J. et al.: Response to comment on Adam et al. Metformin effect on nontargeted metabolite profiles in patients with type 2 diabetes and in multiple murine tissues. Diabetes 2016;65:3776-3785. Diabetes 66, e3-e4 (2017)
3.
Aichler, M. et al.: N-acyl taurines and acylcarnitines cause an imbalance in insulin synthesis and secretion provoking β cell dysfunction in type 2 diabetes. Cell Metab. 25, 1334-1347.e4 (2017)
4.
Álvarez Hernández, E.* et al.: Acute dietary fat intake initiates alterations in energy metabolism and insulin resistance. J. Clin. Invest. 127, 695-708 (2017)
5.
Frankó, A. et al.: Bezafibrate ameliorates diabetes via reduced steatosis and improved hepatic insulin sensitivity in diabetic TallyHo mice. Mol. Metab. 6, 256-266 (2017)
6.
Adam, J. et al.: Metformin effect on non-targeted metabolite profiles in patients with type 2 diabetes and multiple murine tissues. Diabetes 65, 3776-3785 (2016)
7.
Frankó, A. et al.: Bezafibrate improves insulin sensitivity and metabolic flexibility in STZ-treated diabetic mice. Diabetes 65, 2540-2552 (2016)
8.
Brina, D.* et al.: eIF6 coordinates insulin sensitivity and lipid metabolism by coupling translation to transcription. Nat. Commun. 6:8261 (2015)
9.
Kahle, M. et al.: High fat diet-induced modifications in membrane lipid and mitochondrial-membrane protein signatures precede the development of hepatic insulin resistance in mice. Mol. Metab. 4, 39-50 (2015)
10.
Ly-Verdú, S. et al.: Combining metabolomic non-targeted GC×GC-ToF-MS analysis and chemometric ASCA-based study of variances to assess dietary influence on type 2 diabetes development in a mouse model. Anal. Bioanal. Chem. 407, 343-354 (2015)
11.
Neschen, S. et al.: Metformin supports the antidiabetic effect of a sodium glucose cotransporter 2 inhibitor by suppressing endogenous glucose production in diabetic mice. Diabetes 64, 284-290 (2015)
12.
Rozman, J. et al.: Glucose tolerance tests for systematic screening of glucose homeostasis in mice. Curr. Protoc. Mouse Biol. 5, 65-84 (2015)
13.
Schäfer, A. et al.: The epoxyeicosatrienoic acid pathway enhances hepatic insulin signaling and is repressed in insulin-resistant mouse liver. Mol. Cell. Proteomics 14, 2764-2774 (2015)
14.
Frankó, A. et al.: Liver adapts mitochondrial function to insulin resistant and diabetic states in mice. J. Hepatol. 60, 816-823 (2014)
15.
Ly-Verdú, S. et al.: The impact of blood on liver metabolite profiling - a combined metabolomic and proteomic approach. Biomed. Chromatogr. 28, 231-240 (2014)
16.
Walker, A. et al.: Distinct signatures of host-microbial meta-metabolome and gut microbiome in two C57BL/6 strains under high-fat diet. ISME J. 8, 2380-2396 (2014)
17.
Walker, A. et al.: The importance of sulfur-containing metabolites in discriminating fecal extracts between normal and type 2 diabetic mice. J. Proteome Res. 13, 4220-4231 (2014)
18.
Kahle, M. et al.: Phenotypic comparison of common mouse strains developing high-fat diet-induced hepatosteatosis. Mol. Metab. 2, 435-446 (2013)
19.
Ly, A. et al.: Retinal proteome alterations in a mouse model of type 2 diabetes. Diabetologia 57, 192-203 (2013)
20.
von Toerne, C. et al.: Apoe, Mbl2 and Psp plasma protein levels correlate with diabetic phenotype in NZO mice - an optimized rapid workflow for SRM-based quantification. J. Proteome Res. 12, 1331-1343 (2013)