PuSH - Publication Server of Helmholtz Zentrum München

57 Records found.
Zum Exportieren der Ergebnisse bitte einloggen.
Lay all publications on this page into basket
1.
Georgii, E. et al.: The systems architecture of molecular memory in poplar after abiotic stress. Plant Cell 31, 346-367 (2019)
2.
Maccaferri, M.* et al.: Durum wheat genome highlights past domestication signatures and future improvement targets. Nat. Genet. 51, 885–895 (2019)
3.
Pont, C.* et al.: Tracing the ancestry of modern bread wheats. Nat. Genet. 51, 905-911 (2019)
4.
International Wheat Genome Sequencing Consortium (Eversole, K.* ; Feuillet, C.* ; Keller, B.* ; Rogers, J.* ; Stein, N.* ; Appels, R.*) et al.: Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191 (2018)
5.
Gardiner, L.J.* et al.: Hidden variation in polyploid wheat drives local adaptation. Genome Res. 28, 1319-1332 (2018)
6.
Griesmann, M. et al.: Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science 361:eaat1743 (2018)
7.
Juhász, A.* et al.: Genome mapping of seed-borne allergens and immunoresponsive proteins in wheat. Sci. Adv. 4:eaar8602 (2018)
8.
Ramirez-Gonzalez, R.H.* et al.: The transcriptional landscape of polyploid wheat. Science 361 (2018)
9.
Thind, A.K.* et al.: Chromosome-scale comparative sequence analysis unravels molecular mechanisms of genome dynamics between two wheat cultivars. Genome Biol. 19:104 (2018)
10.
Wicker, T.* et al.: Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biol. 19:103 (2018)
11.
Avni, R.* et al.: Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357, 93-97 (2017)
12.
Bolger, M.E.* et al.: From plant genomes to phenotypes. J. Biotechnol. 17, 46-52 (2017)
13.
Clavijo, B.J.* et al.: An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res. 27, 885-896 (2017)
14.
Lutz, U.* et al.: Natural haplotypes of FLM non-coding sequences fine-tune flowering time in ambient spring temperatures in Arabidopsis. eLife 6:e22114 (2017)
15.
Mascher, M.* et al.: A chromosome conformation capture ordered sequence of the barley genome. Nature 544, 427-433 (2017)
16.
Prade, V.M. et al.: The pseudogenes of barley. Plant J. 93, 502-514 (2017)
17.
Schmutzer, T.* et al.: Bioinformatics in the plant genomic and phenomic domain: The German contribution to resources, services and perspectives. J. Biotechnol. 261, 37-45 (2017)
18.
Spannagl, M. ; Nussbaumer, T. ; Bader, K.C. ; Gundlach, H. & Mayer, K.F.X.: PGSB/MIPS plantsDB database framework for the integration and analysis of plant genome data. Methods Mol. Biol. 1533, 33-44 (2017)
19.
Wicker, T.* et al.: The repetitive landscape of the 5100 Mbp barley genome. Mob. DNA 8:22 (2017)
20.
Haberer, G. ; Mayer, K.F.X. & Spannagl, M.: The big five of the monocot genomes. Curr. Opin. Plant Biol. 30, 33-40 (2016)