PuSH - Publication Server of Helmholtz Zentrum München

11 Records found.
Zum Exportieren der Ergebnisse bitte einloggen.
Lay all publications on this page into basket
1.
Krautenbacher, N. et al.: A strategy for high-dimensional multivariable analysis classifies childhood asthma phenotypes from genetic, immunological, and environmental factors. Allergy, accepted (2019)
2.
Laimighofer, M. et al.: Common patterns of gene regulation associated with Cesarean section and the development of islet autoimmunity - indications of immune cell activation. Sci. Rep. 9:6250 (2019)
3.
Bonifacio, E.* et al.: Genetic scores to stratify risk of developing multiple islet autoantibodies and type 1 diabetes: A prospective study in children. PLoS Med. 15:e1002548 (2018)
4.
Do, K.T. et al.: Characterization of missing values in untargeted MS-based metabolomics data and evaluation of missing data handling strategies. Metabolomics 14:128 (2018)
5.
Frohnert, B.I.* et al.: Prediction of type 1 diabetes using a genetic risk model in the Diabetes Autoimmunity Study in the Young. Pediatr. Diabetes 19, 277-283 (2018)
6.
Kindt, A. et al.: Allele-specific methylation of type 1 diabetes susceptibility genes. J. Autoimmun. 89, 63-74 (2018)
7.
Guinney, J.* et al.: Prediction of overall survival for patients with metastatic castration-resistant prostate cancer: Development of a prognostic model through a crowdsourced challenge with open clinical trial data. Lancet Oncol. 18, 132-142 (2017)
8.
Seyednasrollah, F.* et al.: A DREAM challenge to build prediction models for short-term discontinuation of docetaxel in metastatic castration-resistant prostate cancer. JCO Clin. Can. Inform. 1, 1-15 (2017)
9.
von Toerne, C. et al.: Peptide serum markers in islet autoantibody-positive children. Diabetologia 60, 287-295 (2017)
10.
Kondofersky, I. et al.: Three general concepts to improve risk prediction: Good data, wisdom of the crowd, recalibration. F1000 Res. 5:2671 (2016)
11.
Laimighofer, M. ; Krumsiek, J. ; Buettner, F. & Theis, F.J.: Unbiased prediction and feature selection in high-dimensional survival regression. J. Comput. Biol. 23, 279-290 (2016)