PuSH - Publication Server of Helmholtz Zentrum München

25 Records found.
Zum Exportieren der Ergebnisse bitte einloggen.
Lay all publications on this page into basket
1.
Erzurumluoglu, A.M.* et al.: Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci. Mol. Psychiatry, accepted (2019)
2.
Imboden, M.* et al.: Epigenome-wide association study of lung function level and its change. Eur. Respir. J., accepted (2019)
3.
Sakornsakolpat, P.* et al.: Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nat. Genet. 51, 494-505 (2019)
4.
Shrine, N.* et al.: New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nat. Genet. 51, 481-493 (2019)
5.
Shrine, N.* et al.: Author Correction: New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries (Nature Genetics, (2019), 51, 3, (481-493), 10.1038/s41588-018-0321-7). Nat. Genet., accepted (2019)
6.
Jackson, V.E.* et al.: Meta-analysis of exome array data identifies six novel genetic loci for lung function. Wellcome Open Res. 3:4 (2018)
7.
Aschard, H.* et al.: Evidence for large-scale gene-by-smoking interaction effects on pulmonary function. Int. J. Epidemiol. 46, 894-904 (2017)
8.
Wain, L.V.* et al.: Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nat. Genet. 49, 416-425 (2017)
9.
Artigas, M.S.* et al.: Sixteen new lung function signals identified through 1000 Genomes Project reference panel imputation. Nat. Commun. 6:8658 (2015)
10.
Gharib, S.A.* et al.: Integrative pathway genomics of lung function and airflow obstruction. Hum. Mol. Genet. 24, 6836-6848 (2015)
11.
Obeidat, M.* et al.: Molecular mechanisms underlying variations in lung function: A systems genetics analysis. Lancet Resp. Med. 3, 782-795 (2015)
12.
Wain, L.V.* et al.: Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): A genetic association study in UK Biobank. Lancet Resp. Med. 3, 769-781 (2015)
13.
Loth, D.W.* et al.: Genome-wide association analysis identifies six new loci associated with forced vital capacity. Nat. Genet. 46, 669-677 (2014)
14.
Tang, W.* et al.: Large-scale genome-wide association studies and meta-analyses of longitudinal change in adult lung function. PLoS ONE 9:e100776 (2014)
15.
Hancock, D.B.* et al.: Genome-wide joint meta-analysis of SNP and SNP-by-smoking interaction identifies novel loci for pulmonary function. PLoS Genet. 8:e1003098 (2013)
16.
Thun, G.A.* et al.: Causal and synthetic associations of variants in the SERPINA gene cluster with alpha1-antitrypsin serum levels. PLoS Genet. 9:e1003585 (2013)
17.
Artigas, M.S.* et al.: Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function. Nat. Genet. 43, 1082-1090 (2011)
18.
Obeidat, M.* et al.: A comprehensive evaluation of potential lung function associated genes in the SpiroMeta general population sample. PLoS ONE 6:e19382 (2011)
19.
Silverman, E.K.* et al.: Opportunities and challenges in the genetics of COPD 2010: An International COPD Genetics Conference report. COPD-J. Chronic Obstr. Pulm. Dis. 8, 121-135 (2011)
20.
Soler Artigas, M.* et al.: Effect of five genetic variants associated with lung function on the risk of chronic obstructive lung disease, and their joint effects on lung function. Am. J. Respir. Crit. Care Med. 184, 786-795 (2011)