PuSH - Publication Server of Helmholtz Zentrum München

23 Records found.
Zum Exportieren der Ergebnisse bitte einloggen.
Lay all publications on this page into basket
1.
Bentley, A.R.* et al.: Multi-ancestry genome-wide gene–smoking interaction study of 387,272 individuals identifies new loci associated with serum lipids. Nat. Genet. 51, 636-648 (2019)
2.
de Vries, P.S.* et al.: Multiancestry Genome-Wide Association Study of Lipid Levels Incorporating Gene-Alcohol Interactions. Am. J. Epidemiol. 188, 1033-1054 (2019)
3.
Kilpeläinen, T.O.* et al.: Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity. Nat. Commun. 10:376 (2019)
4.
Sung, Y.J.* et al.: A multi-ancestry genome-wide study incorporating gene-smoking interactions identifies multiple new loci for pulse pressure and mean arterial pressure. Hum. Mol. Genet., accepted (2019)
5.
Wuttke, M.* et al.: A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat. Genet. 51, 957-972 (2019)
6.
Feitosa, M.F.* et al.: Novel genetic associations for blood pressure identified via gene-alcohol interaction in up to 570K individuals across multiple ancestries. PLoS ONE 13:e0198166 (2018)
7.
Sung, Y.J.* et al.: A large-scale multi-ancestry genome-wide study accounting for smoking behavior identifies multiple significant loci for blood pressure. Am. J. Hum. Genet. 102, 375-400 (2018)
8.
Li, M.* et al.: SOS2 and ACP1 loci identified through large-scale exome chip analysis regulate kidney development and function. J. Am. Soc. Nephrol. 28, 981-994 (2017)
9.
Warren, H.R.* et al.: Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat. Genet. 49, 403-415 (2017)
10.
Okbay, A.* et al.: Genome-wide association study identifies 74 loci associated with educational attainment. Nature 533, 539-542 (2016)
11.
Scott, R.A.* et al.: A genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart disease. Sci. Transl. Med. 8:341ra76 (2016)
12.
Stitziel, N.O.* et al.: Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease. N. Engl. J. Med. 374, 1134-1144 (2016)
13.
Stitziel, N.O.* et al.: Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease (vol 374, pg 1134, 2016). N. Engl. J. Med. 374, 1898-1898 (2016)
14.
Surendran, P.* et al.: Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat. Genet. 48, 1151-1161 (2016)
15.
Locke, A.E.* et al.: Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197-206 (2015)
16.
Shungin, D.* et al.: New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187-196 (2015)
17.
Kraja, A.T.* et al.: Pleiotropic genes for metabolic syndrome and inflammation. Mol. Genet. Metab. 112, 317-338 (2014)
18.
Wood, A.R.* et al.: Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 46, 1173-1186 (2014)
19.
Berndt, S.I.* et al.: Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat. Genet. 45, 501-512 (2013)
20.
Randall, J.C.* et al.: Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits. PLoS Genet. 9:e1003500 (2013)