PuSH - Publication Server of Helmholtz Zentrum München

29 Records found.
Zum Exportieren der Ergebnisse bitte einloggen.
Lay all publications on this page into basket
1.
Erzurumluoglu, A.M.* et al.: Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci. Mol. Psychiatry, accepted (2019)
2.
Evangelou, E.* et al.: Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 50, 1412-1425 (2018)
3.
Evangelou, E.* et al.: Erratum to: Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits (Nature Genetics, (2018), 50, 10, (1412-1425), 10.1038/s41588-018-0205-x). Nat. Genet., accepted (2018)
4.
Flannick, J.* et al.: Sequence data and association statistics from 12,940 type 2 diabetes cases and controls. Sci. Data 5:180002 (2018)
5.
Mahajan, A.* et al.: Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nat. Genet. 50, 559-571 (2018)
6.
Mahajan, A.* et al.: Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 50, 1505-1513 (2018)
7.
Flannick, J.* et al.: Sequence data and association statistics from 12,940 type 2 diabetes cases and controls. Sci. Data 4:170179 (2017)
8.
Saleheen, D.* et al.: Loss of cardioprotective effects at the ADAMTS7 locus as a result of gene-smoking interactions. Circulation 135, 2336-2353 (2017)
9.
van den Berg, M.* et al.: Discovery of novel heart rate-associated loci using the Exome Chip. Hum. Mol. Genet. 26, 2346-2363 (2017)
10.
Wain, L.V.* et al.: Novel blood pressure locus and gene discovery using genome-wide association study and expression data sets from blood and the kidney. Hypertension 70, e4-e19 (2017)
11.
Wheeler, E.* et al.: Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genome-wide meta-analysis. PLoS Med. 14:e1002383 (2017)
12.
Stitziel, N.O.* et al.: Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease. N. Engl. J. Med. 374, 1134-1144 (2016)
13.
Stitziel, N.O.* et al.: Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease (vol 374, pg 1134, 2016). N. Engl. J. Med. 374, 1898-1898 (2016)
14.
Surendran, P.* et al.: Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat. Genet. 48, 1151-1161 (2016)
15.
Nelson, C.P.* et al.: Genetically determined height and coronary artery disease. N. Engl. J. Med. 372, 1608-1618 (2015)
16.
Stitziel, N.O.* et al.: Inactivating mutations in NPC1L1 and protection from coronary heart disease. N. Engl. J. Med. 371, 2072-2082 (2014)
17.
Brady, I.* et al.: Biomarkers for prediction of CVD in type 2 diabetes. Diabetologia 56, S10-S11 (2013)
18.
Colombo, M.* et al.: Metabolic predictors of CVD in type 2 diabetes. Diabetologia 56, S539 (2013)
19.
Deloukas, P.* et al.: Large-scale association analysis identifies new risk loci for coronary artery disease. Nat. Genet. 45, 25-35 (2013)
20.
Morris, A.P.* et al.: Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 44, 981-990 (2012)